…
Humabiologics is a spinoff of previously mentioned Pinnacle Transplant. CEO and founder Mohammad Albanna, Ph.D., saw an opportunity to, essentially, salvage donated biologic material that Pinnacle Transplant could not use. He started the company in 2018 and is already shipping around the world — to Japan, South Korea, China, Australia, all over Europe, all over Canada — “because there is no other product like our product in the market,” Albanna says. The product? Human collagen.
Albanna was recruited by Pinnacle Transplant from Wake Forest Innovation in North Carolina, the commercialization arm of Wake Forest Baptist medical center, to be in the research and development department to launch new products. “I was trained by the gentleman who pioneered the field of regenerative medicine,” he says, noting that after early successes, “everyone got into the field of regenerative medicine, where we combine materials and cells, where we can bioprint tissues and organs. Because of the work we did with him, we pioneered the field of bioprinting where we can bioprint human tissues and organs.”
Now, with any type of cells from the human body, we have systems to grow those cells in the lab. However, where it comes to the material, the only option that was available for research was using material obtained from animal tissue. The problem with that for developing human therapies, Albanna explains, is “we know for sure that with animal models, 90% of drugs we test on animals that are shown to be safe fail in Phase 1 clinical trials because the animal does not exactly replicate human physiology.
“But now, we can create models [with human collagen] in the lab to test the drugs so we can get realistic results and response. So, before we spend hundreds of millions of dollars and waste years, we know basically if it’s going to work or not.”
If researchers want to create a cancer model to test chemo drugs and see which drug performs better, which has least toxicity to the patient — because every lung cancer is the same and every breast cancer is the same, for instance, but every patient is different — how about taking a biopsy from the patient’s cancer cell, grow them in the lab, create that model, and then testing the drugs on that so it can be determined what the dose needs to be, what type of drug, and if it’s going to have side effects on the patient. “So, you can, literally, have personalized medicine,” Albanna says.
But to do that, researchers need to have the material. “Until we came as a company, there was no human biomaterial. It was all obtained from animal material; there was no access to human.” Albanna combined his expertise in the field with the tissue banking at Pinnacle. “They worked with donated tissue material. Sometimes you cannot use that tissue for transplant, so you end up discarding that tissue. So that’s where we come in. We take that tissue that is not going to be used for transplant, and we extract the main building blocks, like the collagen, and we provide it to researchers so they can use it to create human tissues and bone. The advantage of that is that you are actually using human material to create a human tissue.”
Albanna says he is proud of what his company contributes to the industry. On the one hand, it is a product that is needed in a $40 billion market where every researcher around the world is trying to recreate human tissue or organs and needs that material. “And we are trying to save money for companies that are developing therapies so they can get their therapies more quickly to the patient.” On the other hand is “the noble cause that we honor someone’s last wishes — they donated the human tissue and if it was not being used for transplant, we make sure the donor’s last wishes still are being honored.”
Crediting a supportive environment for startups, Albanna says, “A lot of people helped with starting the business. The city itself; the state in general; we are still in a business incubator where we can get subsidized rent; we have a lot of free services available to us, so that helps us to stay focused on the business and use our money to grow the business as opposed to building the infrastructure around us.”
And he’s helping to pay that forward. “I remember in my first year here, I went to ASU — I had the relationship with the department there — and we took around 10 students to provide them with a hands-on internship,” Albanna says. “It was very successful. By the end of that internship, we hired three people full-time from those students. Some of them had not even completed their degree yet.” And recently, he says, a chemical engineering student landed a job with Medtronic. “So, the idea that we, as a small company, try to provide internships for students actually opens a lot of doors for them where they can actually stay in the state rather than go to California. At least with our role here as a small company, we’re trying always to provide this hands-on experience for the students so, when they apply for a job, they have something meaningful on their resume where big companies will appreciate and give them the opportunity for a position.”
Speaking of the collaborative environment of the Phoenix Bioscience Core, Albanna says, “We see a lot of great stuff happening here and there, so it’s really exciting to see what’s happening right now. I can’t wait to see what’s going to happen in the next five years. It’s going to be completely different than today.”
…